首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  国内免费   2篇
地质学   12篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   2篇
排序方式: 共有12条查询结果,搜索用时 46 毫秒
1.
The Imiter inlier at the eastern Anti-Atlas chain (Morocco) hosts a world-class epithermal Ag-Hg deposit, and several occurrences of sulfide-magnetite mineralization. These occurrences are confined to transcurrent faults that cut mildly to highly potassic I- and S-type granite intrusions (e.g., Igoudrane, Bou Teglimt, Taouzzakt and Bou Fliou).In this contribution, we present new field, petrographic and microanalytical data of the Bou Fliou sulfide-magnetite mineralization in the northwestern part of the Bou Teglimt granodiorite intrusion (567?±?6Ma). Field and microscopic investigations reveal pervasive silicification and potassic alteration associated with iron oxides-rich (>10?vol %) veins, stockworks, and breccias along NE-SW faults. The ore minerals are mainly magnetite, hematite, chalcopyrite, pyrite, sphalerite, Ag-galena, cobaltite, and less abundant Bi-sulfosalts (i.e., cosalite, galenobistmuthite, and llilanite-gustavite). The low-titanium iron oxides (magnetite and hematite), widespread iron-rich breccia, association with crustal scale fault zone, pervasive alteration, and overprinting mineral assemblages suggest a shallow level IOCG-style mineralization. High-order splays of the major fault zone could have provided effective traps for magmatic and basinal Cu and Zn-Pb hydrothermal fluids. The ~550 Ma intrusive phases in the region could have contributed by fluid, elements or heat in a local effective blumbing. The mineralogical and ore textural criteria reflecting ore formation at a realtively shallow crustal environment, but a fluid inclusion study is needed to characterize the ore fluids and mechanism of ore deposition.  相似文献   
2.
http://www.sciencedirect.com/science/article/pii/S1674987112000357   总被引:1,自引:0,他引:1  
Field and remote sensing studies reveal that Au-bearing quartz±carbonate lodes in Romite deposit,in the extreme South Eastern Desert of Egypt,are controlled by NNE-striking shear zones that splay from the ca.660—550 Ma Hamisana Zone.Quartz in releasing bends with sinistral shear geometry and abundant boudinaged quartz-carbonate lodes with serrate ribboned fabrics suggest vein formation throughout a transpressive wrench system.Ubiquitous hydrothermal quartz,carbonate,and subordinate chlorite and sericite within the shear zones and as slivers in veins,indicate that gold deposition and hydrothermal alteration occurred under greenschist fades conditions.The Al(Ⅳ) in chlorite indicates a formation temperature of~300℃.comparable with temperatures estimated from arsenopyrite composition for grains intimately associated with gold in quartz veins. The new geological and geochemical data indicate that splays off the Hamisana Zone are potential gold exploration targets.Quartz veins along the high order(2nd or 3rd) structures of this crustal-scale shear zone are favorable targets.In the Romite deposit and in surrounding areas,a Au-As-Cu-Sb-Co-Zn geochemical signature characterizes mineralized zones,and particularly rock chips with>1000 ppm As and high contents of Cu,Zn,and Co target the better mineralized areas. The carbonateδ13Cpdb andδ18OSmow isotope signatures preclude an organic source of the ore fluid,but metamorphic and magmatic sources are still valid candidates.The intense deformation and lack of magmatism in the deposit area argue for metamorphic dewatering of greenstone rocks as the most likely fluid source.The narrow ranges ofδ13C(-4.6‰to -3.1‰) andδ18O(11.9‰-13.7‰) in carbonate minerals in lodes imply a corresponding uniformity to the ambient temperature andδ13CCO213C∑C) of the ore fluids. The calculatedδ18Oh2o values of 6.9‰—7.9‰for ore fluids,based onδ18O values of vein quartz further suggest a likely metamorphic origin.  相似文献   
3.
The Um Rus tonalite-granodiorite intrusion(~6 km2)occurs at the eastern end of the Neoproterozoic,ENE-trending Wadi Muba rak shear belt in the Central Eastern Desert of Egypt.Gold-bearing quartz veins hosted by the Um Rus intrusion were mined intermittently,and initially by the ancient Egyptians and until the early 1900 s.The relationship between the gold mineralization,host intrusion,and regional structures has always been unclear.We present new geochemical and geochronological data that help to define the tectonic environment and age of the Um Rus intrusion.In addition,field studies are integrated with EPMA and LA-ICP-MS data for gold-associated sulfides to better understand the formation and distribution of gold mineralization.The bulk-rock geochemical data of fresh host rocks indicate a calc-alkaline,metaluminous to mildly peraluminous,I-type granite signature.Their trace element composition reflects a tectonic setting intermediate between subduction-related and within-plate environments,presumably transitional between syn-and post-collisional stages.The crystallization age of the Um Rus intrusion was determined by in situ SHRIMP 206 Pb/238 U and 207Pb/235U measurements on accessory monazite grains.The resultant monazite U-Pb weighted mean age(643±9 Ma;MSWD 1.8)roughly overlaps existing geochronological data for similar granitic intrusions that are confined to major shear systems and are locally associated with gold mineralization in the Central Eastrn Desert(e.g.,Fawakhir and Hangaliya).This age is also consistent with magmatism recognized as concomitant to transpressional tectonics(D2:~650 Ma)during the evolution of the Wadi Mubark belt.Formation of the gold-bearing quartz veins in NNE-SSW and N-S striking fault segments was likely linked to the change from transpressional to transtensional tectonics and terrane exhumation(D3:620-580 Ma).The development of N-S throughgoing fault arrays and dike swarms(~595 Ma)led to heterogeneous deformation and recrystallization of the mineralized quartz veins.Ore minerals in the auriferous quartz veins include ubiquitous pyrite and arsenopyrite,with less abundant pyrrhotite,chalcopyrite,sphalerite,and galena.Uncommon pentlandite,gersdorffite,and cobaltite inclusions hosted in quartz veins with meladiorite slivers are interpreted as pre-ore sulfide phases.The gold-sulfide paragenesis encompasses an early pyrite-arsenopyrite±loellingite assemblage,a transitional pyrite-arsenopyrite assemblage,and a late pyrrhotite-chalcopyrite-sphalerite±galena assemblage.Free-milling gold/electrum grains(10 sμm-long)are scattered in extensively deformed vein quartz and in and adjacent to sulfide grains.Marcasite,malachite,and nodular goethite are authigenic alteration phases after pyrrhotite,chalcopyrite,and pyrite and arsenopyrite,respectively.A combined ore petrography,EPMA,and LA-ICP-MS study distinguishes morphological and compositional differences in the early and transitional pyrites(PyⅠ,PyⅡ)and arsenopyrite(ApyⅠ,ApyⅡ).Py I forms uncommon small euhedral inclusions in later PyⅡand Apy II.PyⅡforms large subhedral crystals with porous inner zones and massive outer zones,separated by narrow As-rich irregular mantles.The Fe and As contents in PyⅡare variable,and the LA-ICP-MS analysis shows erratic concentrations of Au(<1 to 177 ppm)and other trace elements(e.g.,Ag,Te,and Sb)in the porous inner zones,most likely related to discrete sub-microscopic sulfide inclusions.The outer massive zones have a rather homogenous composition,with consistently lower abundances of base metals and Au(mean 1.28 ppm).The early arsenopyrite(Apy I)forms fine-grained euhedral crystals enriched in Au(mean 17.7 ppm)and many other trace elements(i.e.,Ni,Co,Se,Ag,Sb,Te,Hg,and Bi).On the other hand,ApyⅡoccurs as coarsegrained subhedral crystals with lower and less variable concentrations of Au(mean 4 ppm).Elevated concentrations of Au(max.327 ppm)and other trace elements are measured in fragmented and aggregated pyrite and arsenopyrite grains,whereas the undeformed intact zones of the same grains are poor in all trace elements.The occurrence of gold/electrum as secondary inclusions in deformed pyrite and arsenopyrite crystals indicates that gold introduction was relatively late in the paragenesis.The LAICP-MS results are consistent with gold redistribution by the N-S though-going faults/dikes overprinted the earlier NNW-SSE quartz veins in the southeastern part of the intrusion,where the underground mining is concentrated.Formation of the Um Rus intrusion and gold-bearing quartz veins can be related to the evolution of the Wadi Mubarak shear belt,where the granitic intrusion formed during or just subsequent to D2 and provided dilatation spaces for gold-quartz vein deposition when deformed by D3 structures.  相似文献   
4.
The Betam gold deposit, located in the southern Eastern Desert of Egypt, is related to a series of milky quartz veins along a NNW-trending shear zone, cutting through pelitic metasedimentary rocks and small masses of pink granite. This shear zone, along with a system of discrete shear and fault zones, was developed late in the deformation history of the area. Although slightly sheared and boudinaged within the shear zone, the auriferous quartz veins are characterised by irregular walls with a steeply plunging ridge-in-groove lineation. Shear geometry of rootless intra-folial folds and asymmetrical strain shadows around the quartz lenses suggests that vein emplacement took place under a brittle–ductile shear regime, clearly post-dating the amphibolite-facies regional metamorphism. Hydrothermal alteration is pervasive in the wallrock metapelites and granite including sericitisation, silicification, sulphidisation and minor carbonatisation. Ore mineralogy includes pyrite, arsenopyrite and subordinate galena, chalcopyrite, pyrrhotite and gold. Gold occurs in the quartz veins and adjacent wallrocks as inclusions in pyrite and arsenopyrite, blebs and globules associated with galena, fracture fillings in deformed arsenopyrite or as thin, wire-like rims within or around rhythmic goethite. Presence of refractory gold in arsenopyrite and pyrite is inferred from microprobe analyses. Clustered and intra-granular trail-bound aqueous–carbonic (LCO2 + Laq ± VCO2) inclusions are common in cores of the less deformed quartz crystals, whereas carbonic (LCO2 ± VCO2) and aqueous H2O–NaCl (L + V) inclusions occur along inter-granular and trans-granular trails. Clathrate melting temperatures indicate low salinities of the fluid (3–8 wt.% NaCl eq.). Homogenisation temperatures of the aqueous–carbonic inclusions range between 297 and 323°C, slightly higher than those of the intra-granular and inter-granular aqueous inclusions (263–304°C), which are likely formed during grain boundary migration. Homogenisation temperatures of the trans-granular H2O–NaCl inclusions are much lower (130–221°C), implying different fluids late in the shear zone formation. Fluid densities calculated from aqueous–carbonic inclusions along a single trail are between 0.88 and 0.98 g/cm3, and the resulting isochores suggest trapping pressures of 2–2.6 kbar. Based on the arsenopyrite–pyrite–pyrrhotite cotectic, arsenopyrite (30.4–30.7 wt.% As) associated with gold inclusions indicates a temperature range of 325–344°C. This ore paragenesis constrains f S2 to the range of 10−10 to 10−8.5 bar. Under such conditions, gold was likely transported mainly as bisulphide complexes by low salinity aqueous–carbonic fluids and precipitated because of variations in pH and f O2 through pressure fluctuation and CO2 effervescence as the ore fluids infiltrated the shear zone, along with precipitation of carbonate and sericite. Wallrock sulphidation also likely contributed to destabilising the gold–bisulphide complexes and precipitating gold in the hydrothermal alteration zone adjacent to the mineralised quartz veins.  相似文献   
5.
The paper reviews the common techniques of volume change measurement during unsaturated soil testing, focusing in particular on a newly developed system by the authors. The advantages and accuracy of the system compared to other available volume measurement techniques are discussed. This is followed by the application of the system to the volume change measurement of a lime-treated clay soil during suction-controlled triaxial testing, and a discussion on the behaviour of the soil during shearing.  相似文献   
6.
Several occurrences of gold-bearing quartz veins are situated along the east–northeast-trending Barramiya–Um Salatit ophiolitic belt in the central Eastern Desert of Egypt. In the Barramiya mine, gold mineralization within carbonaceous, listvenized serpentinite and adjacent to post-tectonic granite stocks points toward a significant role of listvenitization in the ore genesis. The mineralization is related to quartz and quartz–carbonate lodes in silicified/carbonatized wallrocks. Ore minerals, disseminated in the quartz veins and adjacent wallrocks are mainly arsenopyrite, pyrite and trace amounts of chalcopyrite, sphalerite, tetrahedrite, pyrrhotite, galena, gersdorffite and gold. Partial to complete replacement of arsenopyrite by pyrite and/or marcasite is common. Other secondary phases include covellite and goethite. Native gold and gold–silver alloy occur as tiny grains along micro-fractures in the quartz veins. However, the bulk mineralization can be attributed to auriferous arsenopyrite and arsenic-bearing pyrite (with hundreds of ppms of refractory Au), as evident by electron microprobe and LA-ICP-MS analyses.The mineralized quartz veins are characterized by abundant carbonic (CO2 ± CH4 ± H2O) and aqueous-carbonic (H2O–NaCl–CO2 ± CH4) inclusions along intragranular trails, whereas aqueous inclusions (H2O–NaCl ± CO2) are common in secondary sites. Based on the fluid inclusions data combined with thermometry of the auriferous arsenopyrite, the pressure–temperature conditions of the Barramiya gold mineralization range from 1.3 to 2.4 kbar at 325–370 °C, consistent with mesothermal conditions. Based on the measured δ34S values of pyrite and arsenopyrite intimately associated with gold, the calculated δ34SΣs values suggest that circulating magmatic, dilute aqueous-carbonic fluids leached gold and isotopically light sulfur from the ophiolitic sequence. As the ore fluids infiltrated into the sheared listvenite rocks, a sharp decrease in the fluid fO2 via interaction with the carbonaceous wallrocks triggered gold deposition in structurally favorable sites.  相似文献   
7.
Orogenic, lode gold mineralisation in the South Eastern Desert of Egypt is related to quartz veins spatially and temporally associated with conjugate NW- and NE-trending brittle–ductile shear zones. These structures are assumed to be linked to a regional transpression deformation which occurred late in the tectonic evolution of the area. In the Betam deposit, gold is confined to quartz(±carbonate) veins cutting through tectonised metagabbro and metasedimentary rocks in the vicinity of small granite intrusions. The ore bodies contain ubiquitous pyrite and arsenopyrite, in addition to minor disseminated chalcopyrite, pyrrhotite, galena, tetrahedrite and rare gold/electrum. New ore microscopy and electron microprobe studies indicate that most free-milling Au is intimately associated with the late-paragenetic galena–tetrahedrite–chalcopyrite assemblage. An early Fe–As sulphide assemblage, however, shows minor traces of refractory gold. New mineralogical and geochemical data are used to better constrain on possible element dispersions for exploration uses. This study indicates that parameters that most consistently define primary dispersion of gold in the mine area include pervasive silicification, sericite and carbonate alteration. The trace element data of gold lodes reflect a systematic dispersion of gold and certain base metals. Low-cost, extensive exploration programs may use elevated concentrations of Ag, Sb, Cu and Pb as tracers for Au ore zones in the Betam mine area and surroundings.  相似文献   
8.
The Semna gold deposit is one of several vein-type gold occurrences in the central Eastern Desert of Egypt, where gold-bearing quartz veins are confined to shear zones close to the boundaries of small granitoid stocks. The Semna gold deposit is related to a series of sub-parallel quartz veins along steeply dipping WNW-trending shear zones, which cut through tectonized metagabbro and granodiorite rocks. The orebodies exhibit a complex structure of massive and brecciated quartz consistent with a change of the paleostress field from tensional to simple shear regimes along the pre-existing fault segments. Textural, structural and mineralogical evidence, including open space structures, quartz stockwork and alteration assemblages, constrain on vein development during an active fault system. The ore mineral assemblage includes pyrite, chalcopyrite, subordinate arsenopyrite, galena, sphalerite and gold. Hydrothermal chlorite, carbonate, pyrite, chalcopyrite and kaolinite are dominant in the altered metaggabro; whereas, quartz, sericite, pyrite, kaolinite and alunite characterize the granodiorite rocks in the alteration zones. Mixtures of alunite, vuggy silica and disseminated sulfides occupy the interstitial open spaces, common at fracture intersections. Partial recrystallization has rendered the brecciation and open space textures suggesting that the auriferous quartz veins were formed at moderately shallow depths in the transition zone between mesothermal and epithermal veins.Petrographic and microthermometric studies aided recognition of CO2-rich, H2O-rich and mixed H2O–CO2 fluid inclusions in the gold-bearing quartz veins. The H2O–CO2 inclusions are dominant over the other two types and are characterized by variable vapor: liquid ratios. These inclusions are interpreted as products of partial mixing of two immiscible carbonic and aqueous fluids. The generally light δ34S of pyrite and chalcopyrite may suggest a magmatic source of sulfur. Spread in the final homogenization temperatures and bulk inclusion densities are likely due to trapping under pressure fluctuation through repeated fracture opening and sealing. Conditions of gold deposition are estimated on basis of the fluid inclusions and sulfur isotope data as 226–267 °C and 350–1100 bar, under conditions transitional between mesothermal and epithermal systems.The Semna gold deposit can be attributed to interplay of protracted volcanic activity (Dokhan Volcanics?), fluid mixing, wallrock sulfidation and a structural setting favoring gold deposition. Gold was transported as Au-bisulfide complexes under weak acid conditions concomitant with quartz–sericite–pyrite alteration, and precipitated through a decrease in gold solubility due to fluid cooling, mixing with meteoric waters and variations in pH and fO2.  相似文献   
9.
We report the first Re-Os data on gold-associated arsenopyrite from mesothermal gold-quartz veins in the ancient Egyptian Fawakhir–El Sid gold mining district in the central Eastern Desert. This mining district has an ~5000-year-old history and is displayed in the Turin Papyrus Map (about 1150 BC), which is widely acclaimed as the world’s oldest geographic map, as well as the oldest geologic and mine map. The Fawakhir–El Sid district is part of a regional NNW-trending shear corridor (15 km wide) that hosts several other historic gold mines associated with left-lateral wrench structures and related granite intrusions. Vein-style gold mineralization is hosted within and at the margin of an I-type and magnetite-series monzogranite, the Fawakhir granite intrusion, and a Pan-African (~740 Ma) ophiolite sequence. The ore mineralogy of the mineralized quartz veins includes pyrite-arsenopyrite-pyrrhotite-sphalerite-galena-chalcopyrite-electrum plus a number of tellurides of Ag, Au, and Bi. The 187Re/188Os versus 187Os/188Os regression on 5 points of arsenopyrite gives an age of 601 ± 17 Ma with an initial 187Os/188Os of 0.24 ± 0.07 (2 σ; MSWD = 17). This age coincides within error with the U-Pb age on zircon from the Fawakhir monzogranite (598 ± 3 Ma). The age coincidence and the hydrothermal Te and Bi metal signature suggest a foremost role of granite-related fluids in the quartz-vein system.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号